Ligand-interaction kinetics of the pheromone- binding protein from the gypsy moth, L. dispar: insights into the mechanism of binding and release.
نویسندگان
چکیده
The pheromone-binding proteins (PBPs), which exist at a high concentration in the sensillum lymph surrounding olfactory neurons, are proposed to be important in pheromone detection and discrimination in insects. Here, we present a systematic study of PBP-ligand interaction kinetics. We find that PBP2, from the gypsy moth, Lymantria dispar, associates and dissociates slowly with its biofunctional ligands, (+)- and (-)-disparlure. Tryptophan anisotropy measurements detect PBP multimers in solution as well as an increase in the multimeric state of the protein upon long exposure to ligand. We propose a kinetic model that includes monomer/multimer equilibria and a two-step binding process: (1) external binding of the pheromone assisted by the C terminus of PBP2, and (2) slow embedding of the pheromone into the internal pocket. This experimentally derived model sheds light on the potential biological function and mechanism of PBPs as ligand scavengers.
منابع مشابه
Structure-activity studies with pheromone-binding proteins of the gypsy moth, Lymantria dispar.
Pheromone olfaction in the gypsy moth, Lymantria dispar, involves accurate distinction of compounds with similar structure and polarity. The identified sex pheromone is (7R,8S)-2-methyl-7,8-epoxyoctadecane, 1a, and a known antagonist is (7Z)-2-methyloctadec-7-ene, 4a. The first step in pheromone olfaction is binding of odorants by small, soluble pheromone-binding proteins (PBPs), found in the p...
متن کاملOlfaction in the gypsy moth, Lymantria dispar: effect of pH, ionic strength, and reductants on pheromone transport by pheromone-binding proteins.
The pheromone-binding proteins (PBPs) are 16-kDa abundant proteins in specialized olfactory hairs in insects. The mechanism by which the PBPs remove the pheromone from the inner surface of sensory hairs and deliver it to the sensory cell remains unclear. Existing qualitative models postulate that pheromone is released near the dendrite by a decrease in pH or by a reduced form of the PBP. This s...
متن کاملAminopeptidase N purified from gypsy moth brush border membrane vesicles is a specific receptor for Bacillus thuringiensis CryIAc toxin.
We have evaluated the binding of Bacillus thuringiensis Cry toxins to aminopeptidase N (APN) purified from Lymantria dispar (gypsy moth) brush border membrane vesicle (BBMV). CryIAc toxin bound strongly to APN, while either the structurally related CryIAa and CryIAb toxins or CryIC, CryIIA, and CryIIIA toxins showed weak binding to APN. An in vitro competition binding study demonstrated that th...
متن کاملInvestigation the Mechanism of Interaction between Inhibitor ALISERTIB with Protein Kinase A and B Using Modeling, Docking and Molecular Dynamics Simulation
The high level of conservation in ATP-binding sites of protein kinases increasingly demandsthe quest to find selective inhibitors with little cross reactivity. Kinase kinases are a recently discovered group of Kinases found to be involved in several mitotic events. These proteins represent attractive targets for cancer therapy with several small molecule inhibitors undergoing different ph...
متن کاملAttraction of the gypsy moth to volatile organic compounds (VOCs) of damaged Dahurian larch.
Olfactory responses of the gypsy moth Lymantria dispar (L.) (Lepidoptera: Lymantriidae), a major defoliator of deciduous trees, were examined in Inner Mongolia, China. We studied whether the gypsy moth adults are attracted by the major volatile organic compounds (VOCs) of damaged Larix gmelinii (Dahurian larch) foliage and compared the attractiveness of the plant volatiles with that of the synt...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemistry & biology
دوره 16 2 شماره
صفحات -
تاریخ انتشار 2009